Publication in detail

Mol Biol Cell 2010 Aug 1;21(15):2598-610. Epub 2010 Jun 2.

S100A4 regulates macrophage chemotaxis

ZH, Li; NG, Dulyaninova; RP, House; SC, Almo; AR, Bresnick

Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.

Abstract:
S100A4, a member of the S100 family of Ca(2+)-binding proteins, is directly involved in tumor metastasis. In addition to its expression in tumor cells, S100A4 is expressed in normal cells and tissues, including fibroblasts and cells of the immune system. To examine the contribution of S100A4 to normal physiology, we established S100A4-deficient mice by gene targeting. Homozygous S100A4(-/-) mice are fertile, grow normally and exhibit no overt abnormalities; however, the loss of S100A4 results in impaired recruitment of macrophages to sites of inflammation in vivo. Consistent with these observations, primary bone marrow macrophages (BMMs) derived from S100A4(-/-) mice display defects in chemotactic motility in vitro. S100A4(-/-) BMMs form unstable protrusions, overassemble myosin-IIA, and exhibit altered colony-stimulating factor-1 receptor signaling. These studies establish S100A4 as a regulator of physiological macrophage motility and demonstrate that S100A4 mediates macrophage recruitment and chemotaxis in vivo.

Proven Track Record

The team at Ozgene has over two decades of experience creating customised knockout and knock-in mice for pivotal medical research globally. Over 350 scientific publications are based on research using Ozgene mice.

Go to Publications

Global Client Base

Ozgene generates genetically customised mice for researchers around the world. Ozgene mice can be found in 31 different countries on 5 continents from small academic institutions to multinational pharmaceutical companies.

See Map

Lean Management

Ozgene is applying Lean Management principles to deliver the highest quality services and shortest lead times to our customers. The implementation of Lean Culture has already seen an improvement in our processes and timelines.

Read More