Publication in detail

Cell Mol Gastroenterol Hepatol. 2019 Mar 2;7(4):819-839. doi: 10.1016/j.jcmgh.2019.01.009.

Mouse Model of Mutated in Colorectal Cancer Gene Deletion Reveals Novel Pathways in Inflammation and Cancer.

Currey, N; Jahan, Z; Caldon, CE; Tran, PN; Benthani, F; Lacavalerie, P De; Roden, DL; Gloss, BS; Campos, C; Bean, EG; Bullman, A; Reibe-Pal, S; Dinger, ME; Febbraio, MA; Clarke, SJ; Dahlstrom, JE; Kohonen-Corish, MRJ

Garvan Institute of Medical Research, Sydney, New South Wales, Australia. St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia. Instituto Gulbenkian de Ciência, Oeiras, Portugal. ACT Pathology, The Canberra Hospital, Australian National University Medical School, Canberra, Australian Capital Territory, Australia. Royal North Shore Hospital, University of Sydney, Sydney, New South Wales, Australia. School of Medicine, Western Sydney University, Sydney, New South Wales, Australia. Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, New South Wales, Australia.

BACKGROUND & AIMS: The early events by which inflammation promotes cancer are still not fully defined. The MCC gene is silenced by promoter methylation in colitis-associated and sporadic colon tumors, but its functional significance in precancerous lesions or polyps is not known. Here, we aimed to determine the impact of Mcc deletion on the cellular pathways and carcinogenesis associated with inflammation in the mouse proximal colon. METHODS: We generated knockout mice with deletion of Mcc in the colonic/intestinal epithelial cells (MccΔIEC) or in the whole body (MccΔ/Δ). Drug-induced lesions were analyzed by transcriptome profiling (at 10 weeks) and histopathology (at 20 weeks). Cell-cycle phases and DNA damage proteins were analyzed by flow cytometry and Western blot of hydrogen peroxide-treated mouse embryo fibroblasts. RESULTS: Transcriptome profiling of the lesions showed a strong response to colon barrier destruction, such as up-regulation of key inflammation and cancer-associated genes as well as 28 interferon γ-induced guanosine triphosphatase genes, including the homologs of Crohn's disease susceptibility gene IRGM. These features were shared by both Mcc-expressing and Mcc-deficient mice and many of the altered gene expression pathways were similar to the mesenchymal colorectal cancer subtype known as consensus molecular subtype 4 (CMS4). However, Mcc deletion was required for increased carcinogenesis in the lesions, with adenocarcinoma in 59% of MccΔIEC compared with 19% of Mcc-expressing mice (P = .002). This was not accompanied by hyperactivation of β-catenin, but Mcc deletion caused down-regulation of DNA repair genes and a disruption of DNA damage signaling. CONCLUSIONS: Loss of Mcc may promote cancer through a failure to repair inflammation-induced DNA damage. We provide a comprehensive transcriptome data set of early colorectal lesions and evidence for the in vivo significance of MCC silencing in colorectal cancer.

» Online Version

Proven Track Record

The team at Ozgene has over two decades of experience creating customised knockout and knock-in mice for pivotal medical research globally. Over 400 scientific publications are based on research using Ozgene mice.

Go to Publications

Global Client Base

Ozgene generates genetically customised mice for researchers around the world. Ozgene mice can be found in 31 different countries on 5 continents from small academic institutions to multinational pharmaceutical companies.

See Client Papers

Lean Management

Ozgene is applying Lean Management principles to deliver the highest quality services and shortest lead times to our customers. The implementation of Lean Culture has already seen an improvement in our processes and timelines.

Read More