Publication in detail

Cell Rep. 2019 Jan 22;26(4):984-995.e6. doi: 10.1016/j.celrep.2018.12.094.

Impaired LXRα Phosphorylation Attenuates Progression of Fatty Liver Disease.

Becares, N; Gage, MC; Voisin, M; Shrestha, E; Martin-Gutierrez, L; Liang, N; Louie, R; Pourcet, B; Pello, OM; Luong, TV; Goñi, S; Pichardo-Almarza, C; Røberg-Larsen, H; Diaz-Zuccarini, V; Steffensen, KR; O', A; Brien, ; Garabedian, MJ; Rombouts, K; Treuter, E; Pineda-Torra, I

Centre of Cardiometabolic Medicine, Division of Medicine, University College of London, London WC1 E6JF, UK. Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA. Karolinska Institute, Centre for Innovative Medicine (CIMED), Department of Biosciences and Nutrition, 14183 Huddinge, Sweden. Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London NW3 2QG, UK. Department of Mechanical Engineering, University College London, London WC1E 7JE, UK. Department of Chemistry, University of Oslo, 0371 Oslo, Norway. Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, 14186 Huddinge, Sweden. Institute for Liver & Digestive Health, University College London, Royal Free, London NW3 2PF, UK. Centre of Cardiometabolic Medicine, Division of Medicine, University College of London, London WC1 E6JF, UK.

Abstract:
Non-alcoholic fatty liver disease (NAFLD) is a very common indication for liver transplantation. How fat-rich diets promote progression from fatty liver to more damaging inflammatory and fibrotic stages is poorly understood. Here, we show that disrupting phosphorylation at Ser196 (S196A) in the liver X receptor alpha (LXRα, NR1H3) retards NAFLD progression in mice on a high-fat-high-cholesterol diet. Mechanistically, this is explained by key histone acetylation (H3K27) and transcriptional changes in pro-fibrotic and pro-inflammatory genes. Furthermore, S196A-LXRα expression reveals the regulation of novel diet-specific LXRα-responsive genes, including the induction of Ces1f, implicated in the breakdown of hepatic lipids. This involves induced H3K27 acetylation and altered LXR and TBLR1 cofactor occupancy at the Ces1f gene in S196A fatty livers. Overall, impaired Ser196-LXRα phosphorylation acts as a novel nutritional molecular sensor that profoundly alters the hepatic H3K27 acetylome and transcriptome during NAFLD progression placing LXRα phosphorylation as an alternative anti-inflammatory or anti-fibrotic therapeutic target.

» Online Version

Proven Track Record

The team at Ozgene has over two decades of experience creating customised knockout and knock-in mice for pivotal medical research globally. Over 400 scientific publications are based on research using Ozgene mice.

Go to Publications

Global Client Base

Ozgene generates genetically customised mice for researchers around the world. Ozgene mice can be found in 31 different countries on 5 continents from small academic institutions to multinational pharmaceutical companies.

See Client Papers

Lean Management

Ozgene is applying Lean Management principles to deliver the highest quality services and shortest lead times to our customers. The implementation of Lean Culture has already seen an improvement in our processes and timelines.

Read More