Publication in detail

EMBO J 2011 Aug 16. doi: 10.1038/emboj.2011.281. [Epub ahead of print]

PIKE-mediated PI3-kinase activity is required for AMPA receptor surface expression

Chi, Bun Chan; Chi, Wai Lee; Lin, Mei and Keqiang Ye; Xia, Liu; Xiaoling, Tang; Yongjun, Chen

Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.

AMPAR ( -amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptor) is an ion channel involved in the formation of synaptic plasticity. However, the molecular mechanism that couples plasticity stimuli to the trafficking of postsynaptic AMPAR remains poorly understood. Here, we show that PIKE (phosphoinositide 3-kinase enhancer) GTPases regulate neuronal AMPAR activity by promoting GluA2/GRIP1 association. PIKE-L directly interacts with both GluA2 and GRIP1 and forms a tertiary complex upon glycine-induced NMDA receptor activation. PIKE-L is also essential for glycine-induced GluA2-associated PI3K activation. Genetic ablation of PIKE (PIKE(-/-)) in neurons suppresses GluA2-associated PI3K activation, therefore inhibiting the subsequent surface expression of GluA2 and the formation of long-term potentiation. Our findings suggest that PIKE-L is a critical factor in controlling synaptic AMPAR insertion.

ยป Online Version

Proven Track Record

The team at Ozgene has over two decades of experience creating customised knockout and knock-in mice for pivotal medical research globally. Over 400 scientific publications are based on research using Ozgene mice.

Go to Publications

Global Client Base

Ozgene generates genetically customised mice for researchers around the world. Ozgene mice can be found in 31 different countries on 5 continents from small academic institutions to multinational pharmaceutical companies.

See Client Papers

Lean Management

Ozgene is applying Lean Management principles to deliver the highest quality services and shortest lead times to our customers. The implementation of Lean Culture has already seen an improvement in our processes and timelines.

Read More