Publication in detail

Proc Natl Acad Sci U S A. Proc Natl Acad Sci U S A.

Essential protective role of tumor necrosis factor receptor 2 in neurodegeneration.

Dong, Y; Fischer, R; Naudé, PJ; Maier, O; Nyakas, C; Duffey, M; der Zee, EA Van; Dekens, D; Douwenga, W; Herrmann, A; Guenzi, E; Kontermann, RE; Pfizenmaier, K; Eisel, UL

University of Groningen, NL-9700 CC Groningen, The Netherlands. University of Stuttgart, 70569 Stuttgart, Germany. Semmelweis University, H-1088 Budapest, Hungary. Baliopharm AG, CH-4051 Basel, Switzerland.

Abstract:
Despite the recognized role of tumor necrosis factor (TNF) in inflammation and neuronal degeneration, anti-TNF therapeutics failed to treat neurodegenerative diseases. Animal disease models had revealed the antithetic effects of the two TNF receptors (TNFR) in the central nervous system, whereby TNFR1 has been associated with inflammatory degeneration and TNFR2 with neuroprotection. We here show the therapeutic potential of selective inhibition of TNFR1 and activation of TNFR2 by ATROSAB, a TNFR1-selective antagonistic antibody, and EHD2-scTNFR2, an agonistic TNFR2-selective TNF, respectively, in a mouse model of NMDA-induced acute neurodegeneration. Coadministration of either ATROSAB or EHD2-scTNFR2 into the magnocellular nucleus basalis significantly protected cholinergic neurons and their cortical projections against cell death, and reverted the neurodegeneration-associated memory impairment in a passive avoidance paradigm. Simultaneous blocking of TNFR1 and TNFR2 signaling, however, abrogated the therapeutic effect. Our results uncover an essential role of TNFR2 in neuroprotection. Accordingly, the therapeutic activity of ATROSAB is mediated by shifting the balance of the antithetic activity of endogenous TNF toward TNFR2, which appears essential for neuroprotection. Our data also explain earlier results showing that complete blocking of TNF activity by anti-TNF drugs was detrimental rather than protective and argue for the use of next-generation TNFR-selective TNF therapeutics as an effective approach in treating neurodegenerative diseases.

» Online Version

Proven Track Record

The team at Ozgene has over two decades of experience creating customised knockout and knock-in mice for pivotal medical research globally. Over 350 scientific publications are based on research using Ozgene mice.

Go to Publications

Global Client Base

Ozgene generates genetically customised mice for researchers around the world. Ozgene mice can be found in 31 different countries on 5 continents from small academic institutions to multinational pharmaceutical companies.

See Map

Lean Management

Ozgene is applying Lean Management principles to deliver the highest quality services and shortest lead times to our customers. The implementation of Lean Culture has already seen an improvement in our processes and timelines.

Read More